

256Kx16 MRAM Memory

Features

- Fast 35 ns Read/Write Cycle
- SRAM Compatible Timing and Pin-out Uses Existing SRAM Controllers Without Redesign
- Unlimited Read & Write Endurance
- Data Always Non-volatile for >20-years at Temperature
- One Memory Replaces Flash, SRAM, EEPROM and BBRAM in System for Simpler, More Efficient Design
- Replace battery-backed SRAM solutions with MRAM to eliminate battery assembly, reliability, and liability issues
- 3.3 Volt Power Supply
- Automatic Data Protection on Power Loss
- Commercial, Industrial, Extended Temperatures
- RoHS-Compliant SRAM-compatible TSOPII Package
- RoHS-Compliant SRAM-compatible BGA Package Shrinks Board Area By Three Times

48-BGA

Introduction

The MR2A16A is a 4,194,304-bit magnetoresistive random access memory (MRAM) device organized as 262,144 words of 16 bits. The MR2A16A offers SRAM compatible 35 ns read/write timing with unlimited endurance. Data is always non-volatile for greater than 20-years. Data is automatically protected on power loss by low-voltage inhibit circuitry to prevent writes with voltage out of specification. The MR2A16A is the ideal memory solution for applications that must permanently store and retrieve critical data and programs quickly.

The MR2A16A is available in small footprint 400-mil, 44-lead plastic small-outline TSOP type-II package or 8 mm x 8 mm, 48-pin ball grid array (BGA) package with 0.75 mm ball centers. These packages are compatible with similar low-power SRAM products and other non-volatile RAM products.

The MR2A16A provides highly reliable data storage over a wide range of temperatures. The product is offered with commercial temperature (0 to $+70^{\circ}$ C), industrial temperature (-40 to $+85^{\circ}$ C), and extended temperature (-40 to $+105^{\circ}$ C) range options.

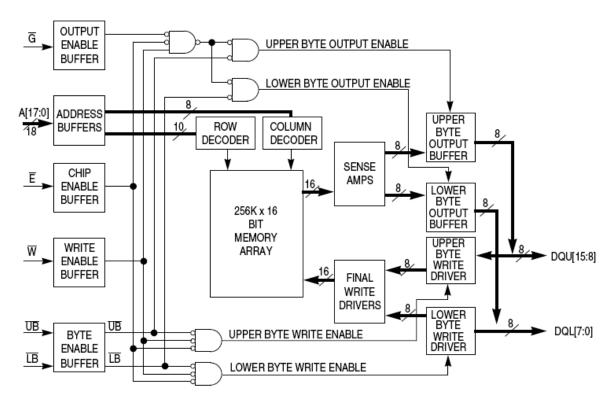
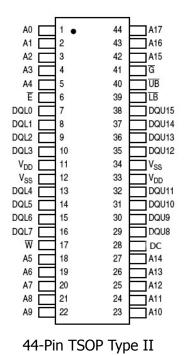
1

Data Sheet: Advance Information

Do

Document Number: MR2A16A

Device Pin Assignment

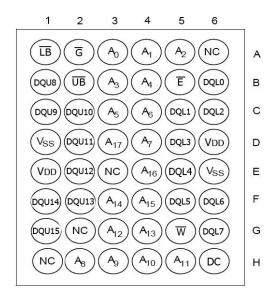

Figure 1. Block Diagram

Table 1 - Pin Functions

Signal Name	Function			
A	Address Input			
/E	Chip Enable			
/W	Write Enable			
/G	Output Enable			
DQ	Data I/O			
VDD	Power Supply			
VSS	Ground			
DC	Do Not Connect			
NC	No Connection			

2

48-Pin BGA

EverSpin Technologies

Table 2. Operating Modes

Ē ¹	G¹	$\overline{\mathbf{W}}^{1}$	ŪB¹	ŪB ¹	Mode	V _{DD} Current	DQL[7:0] ²	DQU[15:8] ²
Н	Χ	Х	Х	Χ	Not selected	I _{SB1} , I _{SB2}	Hi-Z	Hi-Z
L	Н	Н	Х	Х	Output disabled	I _{DDR}	Hi-Z	Hi-Z
L	Х	Х	Н	Н	Output disabled	I _{DDR}	Hi-Z	Hi-Z
L	L	Н	L	Н	Lower byte read	I _{DDR}	D _{Out}	Hi-Z
L	L	Н	Н	L	Upper byte read	I _{DDR}	Hi-Z	D _{Out}
L	L	Н	L	L	Word read	I _{DDR}	D _{Out}	D _{Out}
L	Х	L	L	Н	Lower byte write	I _{DDW}	D _{In}	Hi-Z
L	Χ	L	Н	L	Upper byte write	I _{DDW}	Hi-Z	D _{In}
L	Χ	L	L	L	Word write	I _{DDW}	D _{In}	D _{In}

NOTES:

Electrical Specifications

Absolute Maximum Ratings

This device contains circuitry to protect the inputs against damage caused by high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage greater than maximum rated voltages to these high-impedance (Hi-Z) circuits.

The device also contains protection against external magnetic fields. Precautions should be taken to avoid application of any magnetic field more intense than the maximum field intensity specified in the maximum ratings.

Table 3 - Absolute Maximum Ratings¹

Parameter	Symbol	Value	Unit
Supply voltage ²	V _{DD}	-0.5 to 4.0	V
Voltage on any pin ²	V _{In}	-0.5 to V _{DD} + 0.5	٧
Output current per pin	I _{Out}	±20	mA
Package power dissipation ³	P _D	0.600	W
Temperature under bias MR2A16A (Commercial) MR2A16AC (Industrial) MR2A16AV (Extended)	T _{Bias}	-10 to 85 -45 to 95 -45 to 110	°C
Storage temperature	T _{stg}	-55 to 150	°C
Lead temperature during solder (3 minute max)	T _{Lead}	260	°C
Maximum magnetic field during write MR2A16A (All Temperature Grades)	H _{max_write}	2000	A/m
Maximum magnetic field during read or standby	H _{max_read}	8000	A/m

NOTES:

H = high, L = low, X = don't care

² Hi-Z = high impedance

Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to recommended operating conditions. Exposure to excessive voltages or magnetic fields could affect device reliability.

All voltages are referenced to V_{SS}.

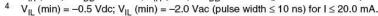

Power dissipation capability depends on package characteristics and use environment.

Table 4 - Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Power supply voltage					
MR2A16A (Commercial) MR2A16AC (Industrial) MR2A16AV (Extended)	V_{DD}	3.0 ² 3.0 ² 3.0 ²	3.3 3.3 3.3	3.6 3.6 3.6	V
Write inhibit voltage					
MR2A16A (Commercial) MR2A16AC (Industrial) MR2A16AV (Extended)	V _{WI}	2.5 2.5 2.5	2.7 2.7 2.7	3.0 ² 3.0 ² 3.0 ²	V
Input high voltage	V _{IH}	2.2	_	V _{DD} + 0.3 ³	V
Input low voltage	V _{IL}	-0.5 ⁴	_	0.8	٧
Operating temperature					
MR2A16A (Commercial) MR2A16AC (Industrial) MR2A16AV (Extended)	T _A	0 -40 -40		70 85 105	°C

NOTES:

- 1,2 There is a 2 ms startup time once Vdd exceeds Vddmin. See Powerup and Powerdown Sequencing Section below.
- 3 V_{IH} (max) = V_{DD} + 0.3 Vdc; V_{IH} (max) = V_{DD} + 2.0 Vac (pulse width \leq 10 ns) for I \leq 20.0 mA.

Power Up and Power Down Sequencing

MRAM is protected from write operations whenever V_{DD} is less than V_{WI} . As soon as V_{DD} exceeds V_{DDmin} , there is a startup time of 2 ms before read or write operations can start. This time allows memory power supplies to stabilize. The /E and /W control signals should track V_{DD} on power up to V_{DD} -0.2v or V_{IH} (whichever is lower) and remain high for the startup time. In most systems, this means that these signals should be pulled up with a resistor so that signal remains high if the driving signal is Hi-Z during power up. Any logic that drives /E and /W should hold the signals high with a power-on reset signal for longer than the startup time. During power loss or brownout where V_{DD} goes below V_{WI} , writes are protected and a startup time must be observed when power returns above V_{DDmin} .

Table 5 - DC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Input leakage current	I _{lkg(I)}	_		±1	μΑ
Output leakage current	I _{lkg(O)}	_	2 — 2	±1	μА
Output low voltage $(I_{OL} = +4 \text{ mA})$ $(I_{OL} = +100 \mu\text{A})$	V _{OL}	-	-	0.4 V _{SS} + 0.2	V
Output high voltage (I _{OH} = -4 mA) (I _{OH} = -100 uA)	V _{OH}	2.4 V _{DD} – 0.2	-	-	V

Table 6 - Power Supply Characteristics

Parameter	Symbol	Тур	Max	Unit
ac active supply current — read modes ¹ (I _{Out} = 0 mA, V _{DD} = max)	I _{DDR}	55	80	mA
ac active supply current — write modes ¹ (V _{DD} = max) MR2A16A (Commercial) MR2A16AC (Industrial) MR2A16AV (Extended)	I _{DDW}	105 105 105	155 165 165	mA
ac standby current $(V_{DD} = max, \overline{E} = V_{IH})$ (no other restrictions on other inputs)	I _{SB1}	18	28	mA
CMOS standby current $(\overline{E} \ge V_{DD} - 0.2 \text{ V and } V_{In} \le V_{SS} + 0.2 \text{ V or } \ge V_{DD} - 0.2 \text{ V})$ $(V_{DD} = \text{max}, f = 0 \text{ MHz})$	I _{SB2}	9	12	mA

NOTES:

Data Sheet: Advance Information

Document Number: MR2A16A

¹ All active current measurements are measured with one address transition per cycle and at minimum cycle time.

Table 7. Capacitance¹

Parameter	Symbol	Тур	Max	Unit
Address input capacitance	C _{In}	_	6	pF
Control input capacitance	C _{In}	_	6	pF
Input/output capacitance	C _{I/O}	_	8	pF

NOTES:

Table 8. ac Measurement Conditions

Parameter	Value
Logic input timing measurement reference level	1.5 V
Logic output timing measurement reference level	1.5 V
Logic input pulse levels	0 or 3.0 V
Input rise/fall time	2 ns
Output load for low and high impedance parameters	See Figure 3A
Output load for all other timing parameters	See Figure 3B

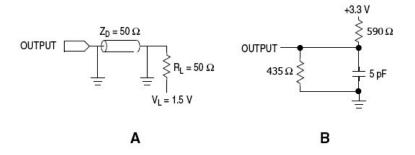


Figure 3. Output Load for ac Test

 $^{^{1}}$ f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, periodically sampled rather than 100% tested.

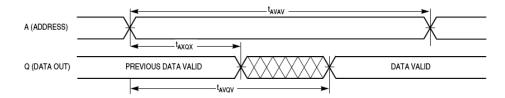

Read Mode

Table 9. Read Cycle Timing^{1, 2}

Parameter	Symbol	Min	Max	Unit
Read cycle time	t _{AVAV}	35	_	ns
Address access time	t _{AVQV}	_	35	ns
Enable access time ³	t _{ELQV}	_	35	ns
Output enable access time	t _{GLQV}	_	15	ns
Byte enable access time	t _{BLQV}	_	15	ns
Output hold from address change	t _{AXQX}	3	-	ns
Enable low to output active ^{4, 5}	t _{ELQX}	3	_	ns
Output enable low to output active ^{4, 5}	t _{GLQX}	0	_	ns
Byte enable low to output active ^{4, 5}	t _{BLQX}	0	_	ns
Enable high to output Hi-Z ^{4, 5}	t _{EHQZ}	0	15	ns
Output enable high to output Hi-Z ^{4, 5}	t _{GHQZ}	0	10	ns
Byte high to output Hi-Z ^{4, 5}	t _{BHQZ}	0	10	ns

NOTES:

- W is high for read cycle.
- 2 Power supplies must be properly grounded and decoupled, and bus contention conditions must be minimized or eliminated during read or write cycles.
- ³ Addresses valid before or at the same time \overline{E} goes low.
- This parameter is sampled and not 100% tested.
- Transition is measured ±200 mV from steady-state voltage.

NOTES:

Device is continuously selected ($\overline{E} \leq V_{IL}, \ \overline{G} \leq V_{IL}).$

Figure 4. Read Cycle 1

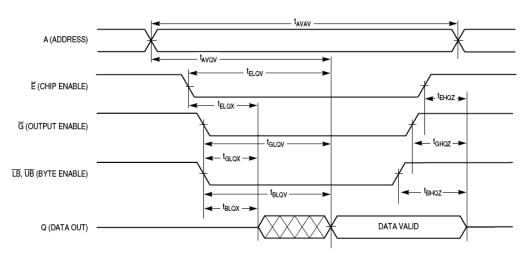


Figure 5. Read Cycle 2

Write Mode

Table 10. Write Cycle Timing 1 (W Controlled)^{1, 2, 3, 4, 5}

Parameter	Symbol	Min	Max	Unit
Write cycle time ⁶	t _{AVAV}	35	_	ns
Address set-up time	t _{AVWL}	0		ns
Address valid to end of write (G high)	t _{AVWH}	18	_	ns
Address valid to end of write $(\overline{G} \text{ low})$	t _{AVWH}	20	_	ns
Write pulse width (G high)	t _{WLWH} t _{WLEH}	15	-	ns
Write pulse width (G low)	t _{WLWH} t _{WLEH}	15	_	ns
Data valid to end of write	t _{DVWH}	10	_	ns
Data hold time	t _{WHDX}	0	-	ns
Write low to data Hi-Z ^{7, 8, 9}	t _{WLQZ}	0	12	ns
Write high to output active ^{7, 8, 9}	t _{WHQX}	3	_	ns
Write recovery time	t _{WHAX}	12		ns

NOTES:

- ¹ A write occurs during the overlap of \overline{E} low and \overline{W} low.
- Power supplies must be properly grounded and decoupled, and bus contention conditions must be minimized or eliminated during read and write cycles
- ³ If \overline{G} goes low at the same time or after \overline{W} goes low, the output will remain in a high-impedance state.
- 4 After W, E, or UB/LB has been brought high, the signal must remain in steady-state high for a minimum of 2 ns.
- The minimum time between E being asserted low in one cycle to E being asserted low in a subsequent cycle is the same as the minimum cycle time allowed for the device.
- All write cycle timings are referenced from the last valid address to the first transition address.
- 7 This parameter is sampled and not 100% tested.
- Transition is measured ±200 mV from steady-state voltage.
- ⁹ At any given voltage or temperature, t_{WLQZ} max < t_{WHQX} min.

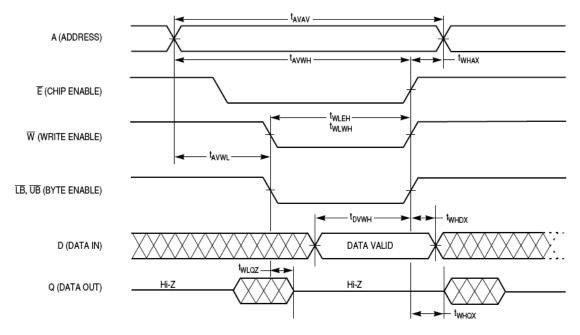


Figure 6. Write Cycle 1 (W Controlled)

Table 11. Write Cycle Timing 2 (E Controlled)^{1, 2, 3, 4, 5}

Parameter	Symbol	Min	Max	Unit
Write cycle time ⁶	t _{AVAV}	35	_	ns
Address set-up time	t _{AVEL}	0	_	ns
Address valid to end of write (G high)	t _{AVEH}	18	_	ns
Address valid to end of write (G low)	t _{AVEH}	20	_	ns
Enable to end of write (G high)	t _{ELEH} t _{ELWH}	15	_	ns
Enable to end of write (G low) ^{7, 8}	t _{ELEH} t _{ELWH}	15	_	ns
Data valid to end of write	t _{DVEH}	10	_	ns
Data hold time	t _{EHDX}	0	_	ns
Write recovery time	t _{EHAX}	12	_	ns

NOTES:

- A write occurs during the overlap of \(\overline{E} \) low and \(\overline{W} \) low.
- 2 Power supplies must be properly grounded and decoupled, and bus contention must be minimized or eliminated during read and write cycles.
- 3 If G goes low at the same time or after W goes low, the output will remain in a high-impedance state
- 4 After W, E, or UB/LB has been brought high, the signal must remain in steady-state high for a minimum of 2 ns.
- The minimum time between E being asserted low in one cycle to E being asserted low in a subsequent cycle is the same as the minimum cycle time allowed for the device.
- ⁶ All write cycle timings are referenced from the last valid address to the first transition address.
- If E goes low at the same time or after W goes low, the output will remain in a high-impedance state.
- 8 If E goes high at the same time or before W goes high, the output will remain in a high-impedance state.

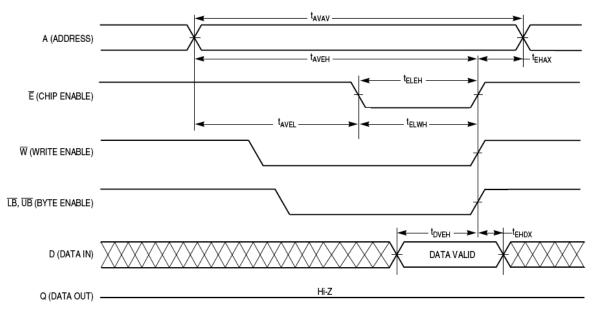


Figure 7. Write Cycle 2 (E Controlled)

Data Sheet: Advance Information

Table 12. Write Cycle Timing 3 (LB/UB Controlled)^{1, 2, 3, 4, 5, 6}

Parameter	Symbol	Min	Max	Unit
Write cycle time ⁷	t _{AVAV}	35	-	ns
Address set-up time	t _{AVBL}	0	8	ns
Address valid to end of write (G high)	t _{AVBH}	18	0-0	ns
Address valid to end of write (G low)	t _{AVBH}	20	-	ns
Byte pulse width (G high)	t _{BLEH} t _{BLWH}	15	_	ns
Byte pulse width (G low)	t _{BLEH} t _{BLWH}	15	_	ns
Data valid to end of write	t _{DVBH}	10	-	ns
Data hold time	t _{BHDX}	0		ns
Write recovery time	t _{BHAX}	12		ns

NOTES:

- A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2 Power supplies must be properly grounded and decoupled, and bus contention conditions must be minimized or eliminated during read and write cycles.
- If G goes low at the same time or after W goes low, the output will remain in a high-impedance state.
- 4 After W, E, or UB/LB has been brought high, the signal must remain in steady-state high for a minimum of 2 ns.
- If both byte control signals are asserted, the two signals must have no more than 2 ns skew between them.
- The minimum time between \(\overline{E}\) being asserted low in one cycle to \(\overline{E}\) being asserted low in a subsequent cycle is the same as the minimum cycle time allowed for the device.
- All write cycle timings are referenced from the last valid address to the first transition address.

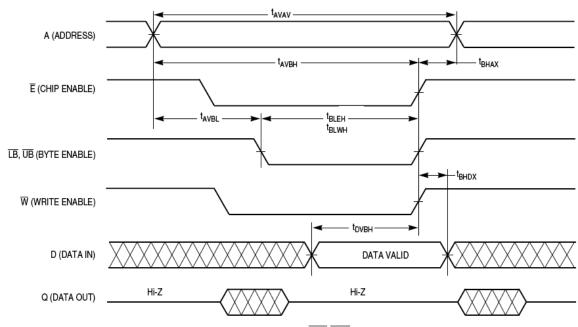
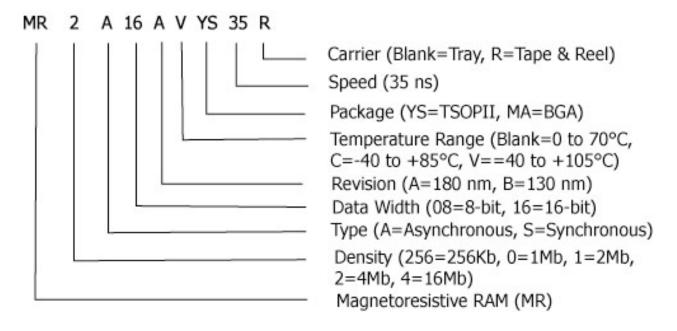
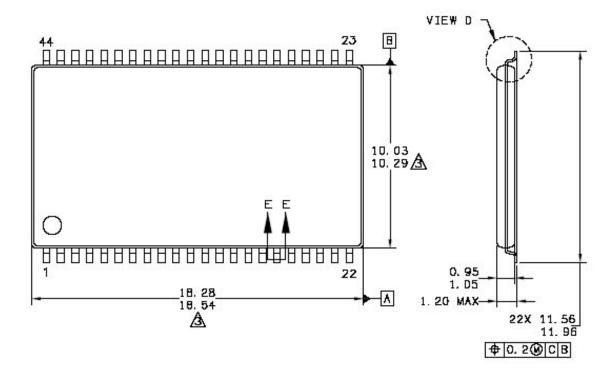
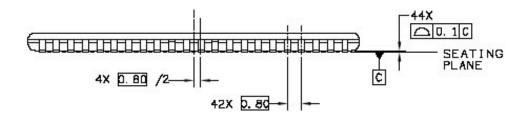
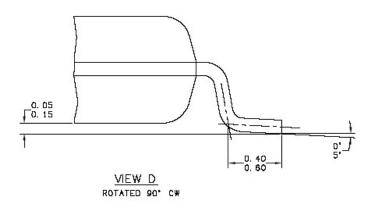



Figure 8. Write Cycle 3 (LB/UB Controlled)

Ordering Information

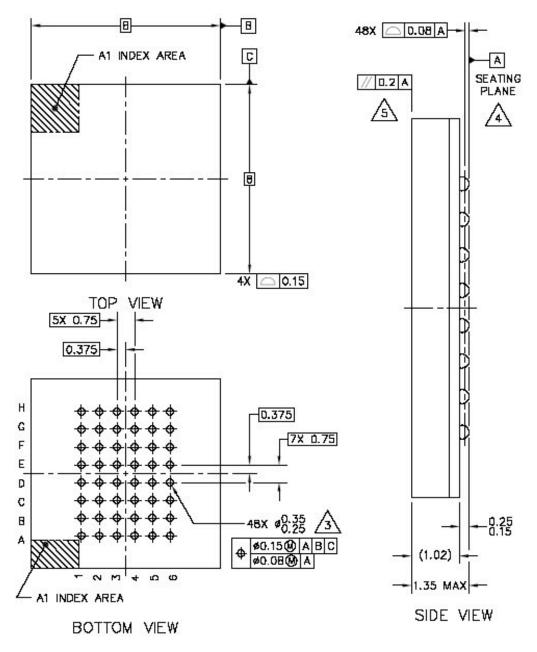

Part Numbering System




Part Number	Description	Temperature
MR2A16AYS35	3.3 V 256Kx16 MRAM 44-TSOP	Commercial
MR2A16ACYS35	3.3 V 256Kx16 MRAM 44-TSOP	Industrial
MR2A16AVYS35	3.3 V 256Kx16 MRAM 44-TSOP	Extended
MR2A16AYS35R	3.3 V 256Kx16 MRAM 44-TSOP T&R	Commercial
MR2A16ACYS35R	3.3 V 256Kx16 MRAM 44-TSOP T&R	Industrial
MR2A16AVYS35R	3.3 V 256Kx16 MRAM 44-TSOP T&R	Extended
MR2A16AMA35	3.3 V 256Kx16 MRAM 48-BGA	Commercial
MR2A16ACMA35	3.3 V 256Kx16 MRAM 48-BGA	Industrial
MR2A16AVMA35	3.3 V 256Kx16 MRAM 48-BGA	Extended

Data Sheet: Advance Information

Mechanical Drawing (44-TSOP)



Data Sheet: Advance Information

Document Number: MR2A16A

12

Mechanical Drawing (48-BGA)

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3.

MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

<u>/5.\</u>

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Revision History

Revision	Date	Description of Change
4	Jun 18, 2007	Added new industrial and extended temperature product information; updated part ordering information; changed to 2 ms delay after power up; power supply characteristics values updated to TBD for industrial and extended temperature devices.
5	Sept 21, 2007	Changed MR2A16ATS35C product description to Legacy Commercial. Added the New Commerical temperature product (MR2A16AYS35) information. Table 3: MR2A16AYS35 H _{max_write} =25 Oe. Table 4: MR2A16AYS35 has a 2 ms power up waiting period. Table 6: Applied values to TBD's in I _{DD} specifications.
6	Nov 12, 2007	Table 2: Changed IDDA to IDDR or IDDW. Table 13: Added note indicating that TS and YS are both valid package codes. Current Part Numbering System: Added commercial (missing letter) temperature range.
7	Sep 12, 2008	Reformat Datasheet for EverSpin, Add BGA Packaging Information, Add Tape & Release Part Numbers, Add Power Sequencing Info, Correct I_{OH} spec of V_{OH} to -100 uA, Correct ac Test Conditions.

How to Reach Us:

EverSpin Technologies, Inc. 1300 N. Alma School Road, MD: 400 Chandler, AZ 85224 480-347-1111 www.EverSpin.com

Information in this document is provided solely to enable system and software implementers to use EverSpin Technologies products. There are no express or implied licenses granted hereunder to design or fabricate any integrated circuit or circuits based on the information in this document.

EverSpin Technologies reserves the right to make changes without further notice to any products herein. EverSpin makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does EverSpin Technologies assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters, which may be provided in EverSpin Technologies data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters including "Typicals" must be validated for each customer application by customer's technical experts. EverSpin Technologies does not convey any license under its patent rights nor the rights of others. EverSpin Technologies products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the EverSpin Technologies product could create a situation where personal injury or death may occur. Should Buyer purchase or use EverSpin Technologies products for any such unintended or unauthorized application, Buyer shall indemnify and hold EverSpin Technologies and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that EverSpin Technologies was negligent regarding the design or manufacture of the part.

EverSpin™ and the EverSpin logo are trademarks of EverSpin Technologies, Inc. All other product or service names are the property of their respective owners. ©EverSpin Technologies, Inc. 2008

Document Number: MR2A16A

EverSpin Technologies